A Composite DiscretdContinuous Control of Robot Manipulators
نویسندگان
چکیده
In this report, a composite control scheme for the control of robot manipulators is proposed. Due to the modeling error or environmental uncertainties, robot motion may present a significant positioning error by using a conventional Computer-Torque Method. To improve tracking capability of robot manipulators, sliding mode control and nonlinear control algorithms have been introduced, but computation is costly, and thus a fast motion execution using simple computer sources is impossible. To solve this problem, we present a composite control algorithm to control robot motion combining a discrete feedforward component and a continuous feedback component. The discrete feedforward component provides a nominal torque computed using the robot dynamics and compensates for dynamic coupling between the links. This part can be updated in a luge sampling time, and can be computed off-line generally, thus real time computation is decreased. The continuous feedback control component uses a structure of Variable Structure System and provides a robust control to disturbances during the sliding mode. This part can be digitally implemented using a short sampling time, and thus a fast motion of a multi-degree freedom robot manipulator can be executed by using a simple computer, or even a single board computer with an %bit CPU. The stability of the proposed multiple-rate control scheme is proven in the paper and efficiency of the control scheme has been demonstrated by simulations of a three-link robot subject to parameter and payload uncertainties. ~~~. ...~. . -. . . . . . . . . . .
منابع مشابه
Optimal discrete-time control of robot manipulators in repetitive tasks
Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...
متن کاملAdaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کاملDesigning an adaptive fuzzy control for robot manipulators using PSO
This paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a performance criteria. In this paper, an improved PSO using logic is proposed to increase the convergenc...
متن کاملAn Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload
In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...
متن کاملA Novel Robust Adaptive Trajectory Tracking in Robot Manipulators
In this paper, a novel adaptive sliding mode control for rigid robot manipulators is proposed. In the proposed system, since there may exist explicit unknown parameters and perturbations, a Lyapunov based approach is presented to increase system robustness, even in presence of arbitrarily large (but not infinite) discontinuous perturbations. To control and track the robot, a continuous controll...
متن کامل